Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A. Tidu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 1341-1344, May 8–11, 2000,
Abstract
PDF
FeAl iron-aluminide based materials with the ordered B2 structure are excellent candidates for use in high temperature applications because of the combination of good mechanical properties, low density, low cost and availability of raw materials, and improved oxidation resistance. The aim of this article is to produce an ultra-fine grained FeAl coating by HVOF thermal spraying of milled powders and characterize the fine scale features of its microstructure. Comparison is made with a more conventional coating obtained by projection of powders obtained by atomization. Starting powders and coatings were investigated using X-ray diffraction and transmission electron microscopy. It was observed that the coating obtained from milled powders had a microstructure essentially characterised by a nanometer grain size and the presence of a disordered FeAl phase.