Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A. Hansbo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 203-209, May 8–11, 2000,
Abstract
PDF
The complexity of many components being coated in the aircraft industry today makes the traditional trial and error approach to obtain uniform coatings inadequate. To reduce programming time and further increase process accuracy a more systematic approach to develop robot trajectories is needed. In earlier work, a mathematical model was developed to predict coating thickness for thermal spray deposition on rotating objects with rotationally invariant surfaces. The model allows for varying spray distance and spray direction but is simple enough to give very short simulation times. An iterative method for robot feed optimization to obtain uniform coatings was also proposed. Currently, the use of the model in engineering practice is being evaluated. A MATLAB implementation of the model has been integrated with a commercial off-line programming system, giving a powerful and efficient tool to predict and optimize coating thickness. Simulations and experimental verifications are presented for two zirconia plasma sprayed parts.