Abstract
The development of materials and alloys for coatings has been increasingly important for reducing costs in different manufacturing processes. The Inconel alloy is widely used due to its chemical inertness and high resistance to high temperatures, but it does not present adequate resistance to erosive wear. In this context, the resistance to wear from cavitation erosion and slurry erosion was evaluated of samples with depositions obtained by laser cladding (Laser directed energy deposition - L-DED) of Inconel 718 and Inconel 718+10%NiNb. The cavitation erosion wear tests were carried out following the ASTM G32 standard (2016), and the ASTM G73-10 standard (2017) was used to evaluate the resistance to slurry erosion wear. The scanning electron microscopy technique (SEM-EDS), and X-ray diffraction (XRD) were used to characterize the cross-section and the surface after wear. The wear mechanism was checked and identified. Microhardness profiles of the cladding cross-section were carried out. The mass loss and wear rate due to cavitation and slurry jet erosion of Inconel 718 and Inconel 718+ 10% NiNb coatings were determined. It was proven that the addition of 10% NiNb in the formation of the cladding caused a 45% increase in average microhardness in the cross-section of the Inconel 718 cladding. The addition of 10% NiNb to the Inconel 718 cladding caused a decrease in mass loss due to slurry erosion from 38.9 mg to 21.9 mg (33%) when the erodent impact angle was 60°.