High-pressure die casting (HPDC) is a well-established manufacturing process used in the automotive sector to make high-precision components. The necessity to reduce fuel consumption increases the use of low-density components in the automotive industry. Corrosion induced by molten metal is one of many failure modes for dies, changing the die's geometry and surface roughness. All combined wear changes the dimensional precision of the manufactured parts but also the surface quality of the components. Many additive deposition methods are applied to decrease wear and recover the surface. Thermally sprayed coatings can improve the surface properties and recover the geometry of the die caused by the aluminum attack. The main objective of this work is to observe the behavior of the H13, Cr3C2-25NiCr, and WC10Co4Cr coatings deposited by HVOF and HVAF, tested against Aluminum corrosion and Die-soldering tests. After dissolution, the chromium carbide reacts with the aluminum, creating a tough intermetallic interface, and raising the extraction tensile stress. After Aluminum corrosion tests, it was observed that the WC 10Co 4Cr HVAF coating presented low adhesion to the aluminum with no observed coating failure due to the formation of intermetallic. Die soldering tests indicated that the WC 10Co 4Cr protects the substrate, resulting in lower extraction tensile stress than H13 base material and other HVOF coatings. It was possible to observe that WC 10Co 4Cr HVAF coating showed results comparable to AlCrN PVD coating.

This content is only available as a PDF.