Abstract
Design, manufacturing, and utilization of efficient heating systems for pipelines and closed-pressure equipment are necessary for cold regions to compensate for heat loss and prevent damages that are caused by freezing of the enclosed liquid. Given large-scale financial losses that stem from failure and bursting of the pipes, the development of novel, efficient, and affordable heaters, which can lead to improved efficiency, cost savings, and environmental benefits across various industries and applications, is of crucial importance. Heating systems have already been produced via different high-temperature thermal spraying techniques to achieve higher efficiency compared to conventional heating cables. In this study, tin, as the heating element, was deposited by using the cold spray process onto alumina coating that was fabricated by flame spraying (FS) to provide electrical insulation. Techno-economic assessment of fabrication and utilization of the coating-based heaters was conducted. It was found that cold-sprayed heater coatings exhibit improved performance compared to other thermally sprayed heater coatings and conventional heater cables. Further, their fabrication and utilization were more economically feasible. The results suggest that the new generations of coating-based heating systems may be competitive with conventional heat tracers that are widely used in industry.