Abstract
In glass mold industry, a surface treatment by laser cladding of a Ni based powder on cast iron is performed with a 4-kW continuous diode laser. For this, a robot programming method named "Wavering" was used. This method allows to cover large surfaces (higher than 5 mm). The cast iron substrate used during this work is employed for its heat exchange properties in glass mold Industry. However, it has drawbacks which are weak wear, corrosion, and abrasion resistance. Conventional techniques used to protect the molds, like Plasma Transferred Arc (PTA), affect the molds microstructure, but also the thermal and mechanical properties. The laser cladding of the Ni based alloy allows to protect the molds without affecting the cast iron thermal properties (and reduce the Heat Affected Zone length). The purpose of this research is to produce a well bonded Ni based melted powder without pores or cracks on large and curvilinear surfaces with the wanted geometry. The impact of the process parameters such as laser power, scanning speed and frequency on the coating geometry was investigated with an experimental design technique using the ANOVA (Analysis of variance) method. It was used to determine and represent the influence of each process parameter on the coating geometry (width, height, and circularity). This ANOVA analysis led to a parameter combination to optimize the Ni coating and the cast iron substrate quality by considering the industrial geometrical constraints. The bonding quality and the cracking behavior are also investigated on optimized parameters. Finally, it appears that laser cladding process leads to a better coating on curvilinear surfaces than other process like PTA.