Coating adhesion by thermal spraying method requires sufficient surface roughness on particle scale particles impacting the surface, particularly in the case of plasma spraying with particle melting state. Grit blasting process is mainly used to create the fine asperities required for spread particles to adhere. To further increase adhesion, the use of laser texturing for metallic substrates is benefit and is already well documented in literature. In the case of ceramic substrates such as alumina, grit blasting with corundum particles is no longer effective in creating a roughness of a few micrometers. Laser texturing therefore appears to be a potential candidate for generating adhesion in coatings. In this work, adhesion mechanisms of three different coatings produced by Atmospheric Plasma Spraying (APS) on a textured alumina substrate were investigated. The influence of substrate surface texturing by two different laser methods, a pulsed nanosecond laser and a continuous laser, was studied. YSZ was chosen as a potential Thermal Barrier Coating (TBC) and Al2O3 and Y2O3 were selected as bondcoats to observe the variation of adhesion mechanisms on ceramic substrates. Textured patterns and coating microstructures were observed by numerical and electron microscopy. Different adhesion mechanisms occurred depending on coating material. Either the geometrical parameters of the pattern and the surface roughness developed by a nanosecond laser and a continuous laser respectively, can promote mechanical anchoring and thus, a real adhesion.

This content is only available as a PDF.