Abstract
Extreme High -Speed Laser Cladding (EHLA) is a new process category of laser cladding. In this study, EH-LA layer was characterized by comparing with conventional laser cladding (LC) layer. Basic SUS316L layers, as well as WC-reinforced SUS316L layers, were formed on SUS304 substrates using both LC and EHLA processes. The macroscopic morphology, microstructure, microhardness, wear resistance, and residual stress of the four types of layers were evaluated. As a result, EHLA layers exhibited slightly higher micro-hardness and less wear loss than that of LC layers, despite the presence of more micropores. This can be due to their finer dendritic structures. Furthermore, residual stress of EHLA layer was lower than that of LC layer due to those micropores. Additionally, EHLA can add up to 45 wt.% WC into SUS316L layer without crack formation, resulting in higher wear resistance than that of LC where crack formation occurred at 25 wt.% WC. This enhanced crack resistance in EHLA is believed to be due to the less heat input during deposition.