Abstract
Aerosol deposition (AD) is a novel method for producing dense nanocrystalline ceramic films at room temperature. Previous studies primarily used flat substrates with varying hardness and roughness. However, the development of micro-device applications is increasing the demand for deposition on structured/patterned surfaces. To investigate the impact of substrate patterns on coating microstructure and growth mechanisms in AD, alumina coatings were deposited on patterned Si substrates. Si wafers with patterns of micropillars were employed. The coatings were characterized using laser scanning microscopy, scanning electron microscopy, and x-ray diffraction. The microstructure and density of coatings in the valleys were influenced by the size of and the spacing between the patterns. The results revealed that coatings initially formed in the valleys before covering the entire pattern. Fragments of the initial powder particles became trapped between the patterns, adhering to the groove bottoms and pillar sides. Subsequent particle impacts and densification processes transformed these fragments, ultimately filling the gaps between the walls. With further deposition, a uniform coating surface was achieved.