Abstract
Previous own works revealed that novel partially amorphous Fe-based alloys have a combination of proper-ties that are beneficial for the application in liquid hydrogen (LH2) tanks, viz low thermal diffusivity, little porosity, and good adhesion. The influence of cryogenic temperatures or hydrogen on coating tensile strength, on the other hand, has not been investigated yet for this material. However, this is crucial for the long-term durability of the coatings under hydrogen and other alternative fuels. Thus, in this work, tubular coating tensile (TCT) tests were performed at room temperature and cryogenic temperatures. In addition, hydrogen charging was carried out to identify a possible regime that is sufficient for TCT tests under the influence of hydrogen. Subsequently, the fracture surfaces were evaluated analytically, optically and profilometrically. Under cryogenic conditions, a significant increase in tensile strength and a finer structure of the fracture surfaces was observed.