Abstract
A key technology to minimize CO2-emissions is the production of hydrogen from water electrolysis. The proton exchange membrane water electrolysis (PEMWE) consists of a stacked system out of bipolar plates (BPP), porous transport layers (PTL) and a membrane electrode assembly (MEA). Research activities are ongoing to minimize material input, reduce costs and increase the performance. For example, the BPP on the anodic side of the stack is currently manufactured of bulk titanium and its substitution by a Ti-coated steel substrate is economically interesting. The main requirements for the BPP-coating are a high coating density, a low electrical resistance and a long lifetime in a harsh electrochemical environment. Coating application on substrates of s ≤ 0.5 mm thickness is conducted with three thermal spraying technologies: Cold Gas Spraying (CGS), High Velocity Air-Fuel (HVAF) spraying and High Velocity Oxy-Fuel (HVOF). Substrate preparation is examined as well. Coating development is conducted with regards to coating thickness, density and oxidation. The examination of coatings includes roughness analysis, structural and chemical analysis. The results allow an evaluation of the suitability of thermally sprayed Ti-coatings by the structural properties for the PEMWE application. Among the three tested processes, CGS is the most suitable for this type of application. The three chosen thermal spraying processes are examined for coating application on metal sheets in context of PEMWE for the first time.