Abstract
The attractive bioactive properties of HA are significantly reduced upon plasma spraying because of the phase transformation that accompanied the deposition process. One major factor that influence the extent to which the transformation occur appears to be the morphology and physical states of the HA raw powders. This paper reports the study on the influence of powder morphology and property on the fracture behaviour and tensile adhesive strength of plasma sprayed HA coatings. Three types of powders were used in the study; calcined HA (CHA), spray dried HA (SDHA) and flame spheroidised HA (SHA). The particle size range of 53 - 75 μm was employed for all 3 types of powders to effect an accurate comparison of the powders. Results show that the cohesive bond strength of the SHA coating was the highest because of the denser microstructure created by well-formed lamella splats. A correspondingly lower bond strength was recorded with less coherent coatings generated by agglomerated CHA and SDHA powders.