Wear leads to high material and energy losses in various industries. The manufacturing of novel nano-carbide WC/Co powder feedstock materials promises a further increase in the performance of thermally sprayed wear protection coatings. A novel experimental powder and a commercial ultra-fine carbide WC/CoCr reference are thermally sprayed onto a 1.0038 substrate by High Velocity Air Fuel (HVAF) spraying. The specimens are metallographically prepared and analyzed by means of light microscopy (LM) and scanning electron microscopy (SEM). Vickers Hardness testing is conducted by microindentation and the porosities are determined by optical image analysis. X-ray diffractometry (XRD) analysis are used to investigate the phase retention. Fine nanocrystalline WC-structures are preserved in the dense coatings. A significant effect of powder type on the porosity of the coating was found. No systematic relationships could be identified between the coating structure and the parameter settings. It was possible to influence decarburization via both the powder type and the selected parameters. The resulting experimental coatings exhibit high hardness values in the range of the commercial ultrafine carbide WC reference. The novel nano-structured coating can contribute to reduced wear and therefore improve the efficient utilization of critical raw materials like tungsten.

This content is only available as a PDF.