Abstract

A novel powder modification method based on the simultaneous softening and agglomeration of steel powders via heat treatment in a rotary tube furnace has been investigated as a means to improve the cold sprayability of H13 tool steel powder. By adjusting starting powder size and shape as well as heat treatment conditions (maximum temperature, cooling rate, and atmosphere), cold spray of H13 powder went from virtually no deposition to the production of thick dense deposits with a deposition efficiency of 70%. Powder agglomeration, surface state, microstructure evolution, and softening are identified as key factors determining powder deposition efficiency and resulting deposit microstructure.

This content is only available as a PDF.