Abstract

Severe plastic deformation (SPD) is the main feature of the Cold Spray (CS) process, which might result in producing metal grain refinement under extensive hydrostatic pressure and high strain rate loading conditions. In this study, an anisotropic strain gradient plasticity model (SGP) is presented to predict materials behavior in CS process. The enhanced dislocation densities produced throughout particle deformation affect coating material properties and modify their thermodynamic characteristics and kinetics of resistance to plastic deformations. This study also demonstrates that the SGP model can describe the experimentally observed trends and account for homogenization of the accumulated strains under dynamic recrystallization conditions. The evolution of statistically stored dislocation density through the characteristic material length scale parameter is in good agreement with experimental results and data reported by other research groups. The proposed SGP modeling is suggested as an express method to evaluate the advanced coating and additively manufactured materials, and powder feedstock used in thermal spray and 3D manufacturing applications.

This content is only available as a PDF.