The need for sustainable use of resources requires continuous improvement in the energy efficiency and development of new approaches to the design and processing of suitable materials. The concept of high entropy alloys (HEAs) has recently been extended to more general compositional complex alloys (CCAs) and multi-principal element alloys (MPEAs). One of the major challenges on the way to application of these alloys is the extensive design and selection efforts due to the great variety of possible compositions and its consequences for workability and resulting material properties. The favorable high-temperature strength of Ni-based and Co-based superalloys is ascribed to a defined γ/γ’ structure consisting of a disordered FCC A1 matrix and ordered L12 γ’ precipitates. In the current work we extended this design concept to CCAs, allowing disordered BCC A2 and ordered B2 phases in additions or in substitution of the original γ/γ’ structure. We used a high-throughput screening approach combining CALPHAD-based computational tools with in situ alloying by means of laser cladding. Wall-type specimens with gradient composition in the system Al-Co-Cr-Fe-Ni-Ti with varying Al, Ti and Cr content were analyzed. The combined modelling and experimental screening approach was demonstrated to be a powerful tool for designing new high performance AM-ready feedstock.

This content is only available as a PDF.
You do not currently have access to this content.