Abstract
The metallic bond coat is generally utilized to increase the coating adhesion and the adhesion of thermal spray bond coat is of essential importance to applications. However, it usually depends on mechanical bonding with a low adhesive strength. In this study, a novel metal bond coat with high cohesion strength is proposed by plasma-spraying Mo-clad Ni-based or Fe-based spherical powder particles. Mo-cladding ensures the heating of spray particles to a high temperature higher than the melting point of Mo and prevents metal core from oxidation during spraying. Theoretical analysis on the splatsubstrate/ splat interface temperature and experimental examination into coating-substrate interface microstructure were performed to reveal the metallurgical bonding formation mechanism. The local melting of substrate surface and resultant bond coating by impacting high temperature droplets creates metallurgical bonding throughout the interfaces between substrate and bond coat, and within bond coat. The experiments were conducted with different substrates in different surface processing conditions including Ni-based alloy, stainless steel and low carbon steel. All pull-off tests yielded strong adhesion higher than the adhesives strength of 80 MPa. The present results revealed that Mo-clad metal powders can be used as new bond coat materials and high performance bond coat can be deposited by atmospheric plasma spraying.