Abstract
Fluorinated polymer coatings are potential candidates for ice protection systems. The current work aims to develop such coatings using cold spray as a production method. A computational approach is used to design a new cold spray nozzle for the efficient deposition of adhesive perfluoroalkoxy alkane. The icephobicity of as-sprayed coatings are evaluated using three-fold characterization: surface’s wetting behavior, time-lapse study of water droplets freezing, and ice adhesion at both macro and microscopic levels. While the as-sprayed coatings exhibited sought superhydrophobic properties, their behavior changed when exposed to frost formation resulting in degraded wetting behaviors and much larger ice adhesion strength. This demonstrates the importance of frost formation when studying icephobic coatings.