Metallization of polymers and fiber-reinforced polymer composites is gaining attention due to the widespread application of these components in various industries, such as wind energy, aerospace, and automotive industries. Cold spray is a promising new technique to achieve the metallization of polymer and fiber-reinforced polymer composites. This work investigates the deposition mechanisms of polymer-coated metallic particles on polymer-based substrates by finite element analyses. Impact mechanics of PEEK-coated nickel particles impacting PEEK and carbon fiber-reinforced PEEK substrates are modeled. Results show the prominence of mechanical interlocking of metallic particles in the substrate, which occurs due to their entrapment inside the substrate, caused by the high energy impact-induced welding of scraped PEEK coating. The PEEK coating acts as a cushioning component, effectively mitigating the impact energy of the metallic component. The scraped PEEK coating also accumulates on the upper half of the particle, forming a cap welded to the substrate and sealing the metallic particle inside. It is observed that the depth of the carbon fiber mat in the substrate affects the mechanism and the success of deposition.

This content is only available as a PDF.
You do not currently have access to this content.