Cold Spraying is an emerging additive manufacturing method that uses a high-speed collision of micrometre sized powders capable of producing a solid-state bonding. Such a principle has led to the recent development of a coating for various surface functionalization and additive manufacturing applications. This paper is the result of an experimental study on the evolution of the deposit properties (ultimate strength, and porosity) generated by the additive growth during cold spraying. The deposit characterization shows the existence of ultimate strength gradient. For samples taken from the bottom to the top of the deposit, the ultimate strength decreases but there is no significant change in porosity value. The porosity evolutions do not allow to establish a generalized law of variation. The numerical analysis of the additive growth shows that the thermomechanical response of the stacking powder during the additive growth can decrease the bonding capacity, the thermomechanical heating (due to the plastic work) and the gradient of thermal kinetics.

This content is only available as a PDF.
You do not currently have access to this content.