Abstract
In this work, a mechanically clad NiCr powder feedstock was deposited on alumina substrates by atmospheric plasma arc spraying. The resultant splats were analyzed for features such as interfacial bonding, splat classification and, critically, Cr distribution. Using a slice-and-view sectioning technique in a dual-beam FIB-SEM system, a representative splat exhibiting discrete Ni and Cr regions was physically deconstructed then reconstructed with visualization software to analyze individual layers with the splat. Although the powder feedstock contained Ni particles clad with clusters of Cr, the splats solidified into distinct layers of Ni and Cr with no signs of interaction between them. A model formulated based on this observation shows that the distribution of Cr cladding on the Ni particulates influences the amount and location of Cr around the solidified Ni splats.