Abstract
Dysprosia stabilized zirconia coatings with large globular pores have good potential as TBC topcoats. In previous work, such coatings have been produced by air plasma spraying with the aid of a polymer pore former. The aim of this work is to optimize the spraying parameters. A design of experiments approach was used to create a two-level full factorial test matrix based on spray distance, powder feed rate, and hydrogen flow. An agglomerated and sintered dysprosia stabilized zirconia (DySZ) powder mixed with polymer particles was sprayed on Hastelloy X substrates that had been prepared with NiCoCrAlY bond coats. The coatings obtained were evaluated based on thermal conductivity, thermocyclic fatigue life, and morphology, which are shown to correlate with spray parameters and in-flight particle properties.