Abstract
In this study, porous molybdenum (Mo) materials were prepared by flame spraying semi-molten particles to low velocity levels. The influence of spray particle state, including particle velocity and melting degree, on microstructure and porosity was investigated to understand the formation mechanism of the pore structure and connection between particles. The results showed that Mo sprayed particles at low velocities (<20 m/s) and limited semi-molten state can be generated by flame spraying. The annealed Mo deposits with the porosity ranged from 39% to 61% were deposited. High porosity in the deposit was achieved through the shielding effect of deposited particles, bonded by the settled melt in the particle/particle interface. Moreover, the porosity generally decreased with the increase of melting degree of spray particles prior to impact.