Coatings, a few-millimeter thick, are widely used to protect new mechanical parts against abrasion and erosion or rebuild worn parts. The plasma transferred arc process is a commonly used process to deposit such coatings. It makes it possible to bring about a metal bath inside which melted powders are introduced to form an alloyed coating between the feedstock material and substrate material with metallurgical adhesion. The main parameters of the process are the arc current intensity, plasma and shrouding gas flow rates, distance between the cathode tip and piece, velocity of plasma torch displacement; they all have a notable effect on the produced coating. This study investigates the plasma behavior and properties of the clad by using a design of experiments. The properties of the coating are the dilution level, porosity, and efficiency of material deposition, heat flux transferred to a water-cooled calorimeter, and the hardness in the clad and the substrate to estimate the thermally affected area.

This content is only available as a PDF.
You do not currently have access to this content.