Abstract
To understand performance of thermal barrier coatings (TBCs) in various industrial applications of Siemens medium size gas turbines, effects of three types of thermal exposures i.e., high temperature isothermal exposure, thermal cycle fatigue (TCF) test, and burner rig test (BRT) on adhesion strength of an air plasma sprayed (APS) TBC have been studied and reported in this paper. It has been seen that the TBC adhesion strength is influenced by the type of thermal exposures differently. Together with a microscopic examination on TBC microstructures and fractography, a correlation between failure mechanisms and types of thermal exposures is discussed. In addition to the impact of various engine operation conditions on behavior of TBC, impacts of TBC surface roughness on turbine performance have also been evaluated. Surface profile and surface roughness on as-sprayed and polished TBC and cast metal (uncoated) have been measured and two different polishing methods have been compared. As a result, a requirement of TBC surface roughness and a preferable polishing method are suggested.