Abstract
The efficiency of aero-engines combustion chambers with thermal barrier coating (TBC) is improved when numerous cooling holes are laser drilled with inclined angles. However, during the laser drilling process, especially in the percussion mode, a detrimental crack can be generated at the TBC interface. Thus, each hole could be edged with a non-visible delaminated area underneath the ceramic top-coat. The present work is focused on the thorough study of the delamination induced by laser percussion drilling when interrupted drilling conditions are presented. Shallow angle drilling was applied on separated holes with 1 to 4 laser pulses respectively and various acute incident angles. Crack length was assessed by conventional metallographic preparation. A special experimental method was carried out in order to inspect the delaminated interface and the lateral edge of a semi-hole. This non-destructive assessment of the delamination of laser drilled TBC was complemented by a 3D imaging of a semi-hole using X-Ray microscopy. Results are presented with attention on both crack initiation and propagation during the laser percussion drilling of plasma-sprayed TBC.