Hardmetal-like coatings of the TiC-Ni system are potential for use as wear, corrosion and heat resistant coatings in various operation conditions. Our previous works [1-12] have shown that these materials are well sprayable using different thermal spray processes such as plasma, D-Gun and HVOF spraying. Since HVOF spraying is today the most important process used to apply carbide based coatings, this study was carried out in order to evaluate more systematically the sprayability of these novel spray powders and the influence of HVOF spray parameters on some coating properties. Coating samples were prepared by using DJ Hybrid gun with propane as a fuel gas, and a CDS gun with hydrogen fuel gas. Oxygen flow rate was varied in both cases for changing the flame temperature. Microstructure, phase composition, hardness, and abrasion wear resistance of the coated samples were investigated. The results showed that both HVOF processes used give satisfactory coating properties and that the use of high oxygen flow rates is beneficial for improving the wear resistance of the coatings. Powders with fine particle size are beneficial in the DJ Hybrid process; the use of coarse powders results in coatings with somewhat higher wear rates. The optimum spray condition for the TiC-Ni system powders differs from that typically used for conventional WC-Co and Cr3C2-NiCr powders by a higher flame temperature.

This content is only available as a PDF.
You do not currently have access to this content.