Abstract

In cutting tool technologies WC-Co based materials are increasingly replaced by composites containing TiC as hard phase and Ni or Co based metallic binders to improve life time and the performance at higher temperatures. These new light-weight materials are also promising for wear resistant coatings. However, while the production of WC-Co coatings by thermal spray techniques, especially high velocity oxy-fuel flame (HVOF) spraying, is well-established, thermal spraying of TiC-based powders did not lead to satisfactory results so far. This could be attributed to the oxidation during the spray process and the insufficient bond between hard phases and the metallic binder. Strategies to improve the properties of TiC-based coatings aim for microstructural modifications, especially by alloying additives into the thermal spray powder. By HVOF and vacuum plasma spraying (VPS), modified TiC-based coatings are produced, which globally show similar microstructures but significantly differ in their oxide contents. Investigations of mechano-technological properties and wear mechanisms demonstrate that alloying Mo into the hard phases or the metallic binder of thermal spray powders can improve the adhesion between hard phases and metallic binder of the coatings. In addition, properties of the metallic matrix can be tuned up for specific applications by solution hardening. In case of HVOF-coatings these effects are partially compensated by high oxygen contents. The overall better performance of coatings produced by VPS demonstrates that the high potential to improve properties of TiC-based composites by alloying additives can only be attained by minimizing the oxidation during the spray process.

This content is only available as a PDF.
You do not currently have access to this content.