Abstract
DC plasma spraying has been widely recognized as a quick and economic way to produce all kinds of coatings (metals, alloys, and ceramics) for a variety of applications. There has been a growing interest in using radio frequency (RF) plasmas. Studies have been reported on characterization of plasma-sprayed coatings by TEM, including thermal barrier coatings, alumina coatings, and Ni-Al coatings. There are, however, no detailed studies reported on microstructural comparisons of coatings prepared by RF and DC plasma spraying. In this paper, XRD, SEM, TEM, polarizing OM, four-point bending fracture, and molten particle impact behavior are used to clarify microstructural differences between the RF- and DC-coatings. The results showed that the microstructures were much different for both cases, especially in the interfacial region between the coatings and the substrates. Paper includes a German-language abstract.