Abstract

The conditions of particle injection into the side of plasma jets play an important role in determining the microstructure and properties of sprayed deposits. However, few investigations have been carried out on this topic. The current work presents the results of an experimental and computational study of the influence of injector geometry and gas mass flow rate on particle dynamics at injector exit and in the plasma jet. Two injector geometries were tested: a straight tube and a curved tube with various radii of curvature. Zirconia powders with different particle size range and morphology were used. A possible size segregation effect in the injector was analyzed from the space distribution of particles collected on a stick tape. The spray pattern in the plasma jet was monitored from the thermal radiation emitted by particles. An analysis of the particle behavior in the injector and mixing of the carrier-gas flow with the plasma jet was carried out using a 3-D computational fluids dynamics code.

This content is only available as a PDF.
You do not currently have access to this content.