Abstract

Tungsten carbide thermal spray coatings have been used for more than twenty years in the commercial aircraft industry in applications such as turbine blade and flap-track wear surfaces. Additionally, the evaluation of tungsten carbide (WC) coatings to replace chrome plating in other aircraft applications has been underway for several years. For example, WC coatings applied by the high velocity, oxy-fuel (HVOF) process are being evaluated for use on aircraft landing gear parts. One factor that affects the suitability of WC coatings is the fatigue life of the coated part. This study compares the fatigue life of electrodeposited chrome plated specimens to the fatigue life of WC HVOF-sprayed specimens on aircraft landing gear alloys. Fatigue tests were run on cantilever flat beam specimens coated on one side and subjected to bending fatigue loads. Residual stress levels for the coatings were determined using the Modified Layer Removal Method on rectangular residual stress specimens processed with the flat beam specimens. Also, the Young's modulus and Poisson's ratio of the coating were determined using the Cantilever Beam Bending Method performed on beam specimens that were processed with the fatigue specimens and the residual stress specimens. Results indicate that certain levels of residual stress in the coating can enhance the fatigue life of the parts. The fatigue lives in bending tests of several WC coated specimens are compared with the fatigue life of chrome plated specimens.

This content is only available as a PDF.
You do not currently have access to this content.