Abstract

Effect of nozzle geometry (such as throat diameter of a barrel nozzle, exit diameter and exit divergence angle of a divergent nozzle) on HVOF thermal spraying process (thermodynamical behavior of combustion gas and spray particles) was investigated by numerical simulation and experiments with Jet KoteTM II system. The process changes inside the nozzle as obtained by numerical simulation studies were related to the coating properties. A NiCrAIY alloy powder was used for the experimental studies. While the throat diameter of the barrel nozzle was found to have only a slight effect on the microstructure, hardness, oxygen content and deposition efficiency of the coatings, the change in divergent section length (rather than exit diameter and exit divergence angle) had a significant effect. With increase in divergent section length of the nozzle, the amount of oxide content of the NiCrAIY coatings decreased and the deposition efficiency increased significantly. Also, with increase in the exit diameter of the divergent nozzle, the gas temperature and the degree of melting of the particle decreased. On the other hand the calculated particle velocity showed a slight increase while the gas velocity increased significantly.

This content is only available as a PDF.
You do not currently have access to this content.