Abstract

In thermal spray processes, the coating structure is the result of flattening and cooling of molten droplets on the substrate. The study of the cooling time and evolution of the splat size during impact is then of the highest importance to understand the influence of the spray parameters and substrate characteristics on the coating structure. Measurement of particle temperature during impact requires the use of a high-speed 2-color pyrometer to collect the thermal emission of the particle during flattening. Simultaneous measurement of the splat size with this pyrometer is difficult since the size of the particle can change as it cools down. To measure the splat size independently, a new measurement technique has been developed. In this technique the splat size is measured from the attenuation of the radiation of a laser beam illuminating the particle during impact. Results are presented for plasma sprayed molybdenum particles impacting on a glass substrate at room temperature. It is shown that the molybdenum splat reaches its maximum extent about 2 microseconds after the impact. In this work, we show that this increase of the splat surface is followed by a phase during which the splat size decreases significantly during 2 to 3 microseconds.

This content is only available as a PDF.
You do not currently have access to this content.