Abstract

An analysis of a d.c. plasma jet is presented using a three-dimensional commercial fluid dynamics code, ESTET. This code solves the coupled conservation equations of mass, species, momentum and thermal energy equations for a compressible and turbulent fluid in control volume and finite difference formulation. Computations take into account fluid turbulence using a standard k-s model with the Launder and Sharma correction for the laminar zones, e.g. the plasma core. Two series of spraying conditions differing in the total gas flow rate (30 and 60 slm) and the arc current (300 and 600 A, respectively) are computed. The process parameters are independently varied about the nominal operating conditions. The effect of the variation of primary and secondary gas flow rate, effective power and powder carrier gas flow rate on flow fields characteristics, is discussed.

This content is only available as a PDF.
You do not currently have access to this content.