A simple test procedure, based on steady state flow through a membrane, has been developed for measurement of the gas permeability of specimens over a range of temperature. The reliability of this equipment has been verified by testing solid disks containing single perforations and comparing the measured flow rates with those expected on the basis of laminar flow. Coatings of yttria-stabilised zirconia have been produced by plasma spraying in vacuum and in air. The specific permeability of these coatings has been measured at temperatures ranging up to 600°C, using hydrogen gas. It has been found that permeability is increased for coatings produced with longer stand-off distances and at higher pressures. Porosity levels have been measured using densitometry and microstructural features have been examined using SEM. A model has been developed for prediction of the permeability from such microstructural features, based on percolation theory. Agreement between predicted and measured permeabilities is good, although it is clear that more comprehensive data are needed in order to validate the model systematically.

This content is only available as a PDF.
You do not currently have access to this content.