Abstract
The Young's modulus of the ceramic top coat of a plasma sprayed thermal barrier coating (TBC) has been reported to vary by as much as a factor of three with changes in processing parameters and by as much as a factor of four due to prolonged thermal exposure. Since the residual stress is expected to vary directly with the modulus of the ceramic layer, it follows that a change in modulus will change the residual stresses in the ceramic layer. The objective of this study was to evaluate the modulus of plasma sprayed coatings as a function of thermal cycle exposure and silica content of the ceramic. The study employed the Cantilever Beam Bending Method to examine Young's modulus for an yttria stabilized zirconia TBC applied by plasma spraying, for zero and ten thermal cycles and for silica contents of 0.1% and 1.0%. Results are discussed in terms of mechanisms that may affect modulus and the effect of modulus variations on residual stresses.