Abstract

Future development of thermal spray processes and new composite materials raises an important problem concerning the transition from qualitative to quantitative methods of coatings evaluation. It is well known that thermal spray coating deposition in most cases is accompanied by the formation of temporal and residual stresses through the coating thickness. For proper evaluation of formed stressed state it is extremely important to know the real value of elastic characteristics in different layers of the coating. This problem has become more complicated taking into consideration the variety of materials, different spray parameters, number of coating layers and extreme service conditions. These values can be obtained only from experimentation. Elastic characteristics (EC) could be used in many calculations, such as durability, stiffness, fatigue, vibration and others. This paper describes new methods of experimental determination of elastic characteristics presumed as variable throughout the coating thickness. Influence of coating composition, particle size of initial powders, spray parameters, post-treatment and other factors on elastic modulusses were studied. Obtained experimental data for different materials supplement existing data and can be used for evaluation of residual stresses and other purposes.

This content is only available as a PDF.
You do not currently have access to this content.