During grinding of thermally sprayed WC-Co, the grinding ratio G ( ratio of volume of work removed to the volume of wheel consumed) is usually low and the finish produced sometimes is inadequate. Improvement in surface finish accompanies increase in grinding ratio. The objective of this investigation is to study the effect of type of abrasive, table speed, and depth of cut on the surface finish and hardness of WC-Co. Thermally sprayed WC-12 wt % Co and WC-17 wt % Co produced using the high velocity oxygen fuel (HVOF) process, have been ground using silicon carbide and diamond wheels under different operating conditions. The surface profile reveals the significant role played by the above parameters on the surface finish. The grinding ratio, G in case of diamond grinding was found to be larger than silicon carbide grinding however, the quality of the surface finish produced by silicon carbide was better than the diamond. The surface structure of the ground WC-Co was examined by SEM. Surfaces ground using a silicon carbide wheel exhibited extensive plastic flow, while surfaces ground with diamond wheels are highly fractured with localized flow which suggests two different mechanisms of material removal. The surface hardness after grinding, was found to depend on the type of abrasive and table speed. Silicon carbide grinding has shown higher hardness and better surface finish than diamond grinding.

This content is only available as a PDF.
You do not currently have access to this content.