The high quality of the thermally sprayed tungsten carbide coatings has been attributed to high particle velocity and relatively low particle temperature. Such thermal spray conditions can be obtained with the HVOF spray process. In comparison to the plasma spray process, in the HVOF spray process the high particle velocity and optimum particle temperature have been associated with very high gas velocity (>1000 m/s) and a relatively low gas temperature (< 2700 °C). In this work tungsten carbide coatings (WC-17Co) were sprayed by the HVOF process with a low and a high gas velocity of 1050 and 1560 m/s, respectively. The spray tests were carried out also with different hydrogen/oxygen ratios. The coatings were abrasion tested in order to find out how gas velocity and the fuel/oxygen ratio affect the coating quality and wear rate. Wear rates of the HVOF sprayed coatings were found to decrease with the higher combustion gas velocity. The coating quality and wear rate became also less sensitive to gas parameters with the increasing gas velocity. The coating microhardness and wear rate were also compared to hot isostatic pressed (HIP) reference material from the same spray powder lot. The HIP sintered test piece was found to be less wear resistant than the corresponding thermally sprayed coatings.

This content is only available as a PDF.
You do not currently have access to this content.