Stainless austenitic steels like the 316L (1.4404) are widely applied in various applications and were also used for surface protection using thermal spraying. The reason for this is the easy processability and the high corrosion resistance. Stainless austenitic steels typically contain the following alloying elements: The formation of an austenitic microstructure is achieved by nickel (Ni). The addition of chromium (Cr) lead to good corrosion resistance due to formation of an oxide layer. For resistance against pitting corrosion, molybdenum (Mo) can be added. Also, stainless austenites usually exhibit very low carbon and nitrogen contents to prevent chromium carbides and nitrides which reduces the corrosion resistance. However, both alloying elements cannot be classified as being detrimental in stainless austenites in general. In contrast high nitrogen contents can also be used to improve the chemical properties, especially the resistance against pitting corrosion. Finally, carbon and nitrogen lead to an increase in hardness of the thermal sprayed layer. Based on this knowledge, a high-strength austenite for thermal spraying was developed. The new high strength austenite was processed by HVAF spraying with different particle distributions and parameter variations. Resulting coatings were investigated regarding the microstructure, elemental composition, hardness and corrosion properties in comparison to the standard coating material 316L.

This content is only available as a PDF.
You do not currently have access to this content.