Abstract
In the last 15 years, the cold spray process has demonstrated a great efficiency for the deposition of metallic powders. In this case, the consolidation of coatings is achieved thanks to the high kinetic energy of unmelted particles exhibiting a ductile behaviour. Dealing with ceramics, cold spray is also of great interest because one can expect properties not reachable with classical thermal spray technologies thanks to lower involved temperatures. However, cold spray of ceramics still remains challenging because of the ceramics intrinsic brittleness. Here, in the specific case of hydroxyapatite and to overcome this brittleness issue, we investigate the role of an intermediate PEEK layer between the substrate and the deposit. We highlight how this sublayer previously deposited by FS or air APS spraying can help improving the consolidation of the coating and its growth.