Applications in thermal and kinetic spraying increasingly aim for coating of parts with complex geometries. So far, respective robot programming for the required path during deposition is usually adjusted individually in time-consuming procedures. Thus, it is essential to develop methods that allow a fast adaptation to part geometries and production conditions as well as possible quality control. To tackle these problems, this work addresses novel strategies for robot programming and post-spray analyses. The design of the method and workflow follows routes of smart manufacturing and should enable fast and accurate implementation into spray procedures. Here, the developed application can handle complex parts of arbitrary geometry in the form of CAD files. Supported features include (i) cutting the objects according to the object boundary, (ii) creating self-intersecting curves, (iii) generating a set of index-sequence-based spatial discrete points and (iv) reordering the discrete points to generate adaptive paths. Robot offline programming allows for process simulation, analysis and optimization of the robot kinematics. By optical scanning profilometry, the layer-by-layer deposit build-up could be monitored for quality control, as well as for the determination of the final overall coating thickness. The entire procedure was tested by cold spraying onto a complex workpiece, validating the capability of the proposed strategy. Based on the universal layout of the applied methods, the strategies can also be applied for thermal spraying in general, considering individual boundary conditions. With respect to cold spraying, the implementation framework of this study provides a good basis for part repair and additive manufacturing.

This content is only available as a PDF.
You do not currently have access to this content.