In metal die casting as well as plastic injection molding, controlling the heat balance during the injection and solidification process can lead to fewer defects and a better component quality. An appropriate cooling channel design for the mold can help to control the solidification to a certain extent. But the heat control achievable by cooling channels is limited due to the high effective thermal mass, and therefore near-cavity energy input is of interest. In this paper, a simulation study is performed demonstrating the use of plasma sprayed ceramic coating as a heating coating at the cavity of the mold. The goal is to apply heat faster and locally focused during the solidification process in metal die casting as well as before the injection phase in plastic injection molding. The heat generation of these ceramic coatings is modelled using experimentally measured values and the effects of this approach on defects such as distortion and hot tearing is discussed.

This content is only available as a PDF.
You do not currently have access to this content.