Abstract
In this study, NbC coatings, 250 µm thick, were deposited by low-velocity flame spraying on stainless steel substrates and were laser remelted in a controlled argon atmosphere. Isolated passes transverse of the coatings were performed at different focal lengths at speeds of 10, 15, and 20 mm/min. Using the selected laser parameters, layers were recast with eight passes at 10% superposition. Erosion-corrosion tests were performed and coating surfaces and cross-sections were characterized via SEM, EDS, and XRD analysis. Modified surfaces of dense, 800-µm thick coatings with no defects and excellent metallurgical bonding with the substrate were obtained. It was found that dilution of the coating with the substrate formed a gradient of chemical composition and mechanical properties and that erosive-corrosive wear resistance was highest for an erodent impact angle of 90°.