This study employs a three-dimensional simulation to investigate the cold gas dynamic manufacturing process. During the buildup of the desired object, sharp edges, stagnation points, and corners are likely to form that can influence the trajectories of the particles. This leads to dispersion and lack of particle deposition in these areas, which can eventually reduce the precision and efficiency of the build process. A cylindrical and frustum-shaped object are numerically simulated on a substrate to represent typical additively manufactured parts. Particle trajectories and impact conditions with and without these objects are compared. The results provide useful information for understanding the limitations and challenges associated with cold gas dynamic manufacturing, which can help improve the quality and precision of the process.

This content is only available as a PDF.
You do not currently have access to this content.