This study assesses the durability of superhydrophobic surfaces that possess a scalable architecture similar in morphology to branching or corymbose coral. In the experiments, electrolytic copper powders with a coral-like morphology are cold sprayed onto metal, ceramic, and glass substrates, forming a textured copper layer with a structural hierarchy based on the morphology of the powder. After cold spraying, a flame treatment is applied, creating a porous layer of Cu2O over the pliable Cu surface, which further increases roughness. As a final step, a fluoroalkyl silane spray is applied to reduce surface energy. It is shown that the fluorinated surface retains its excellent water repellency after cyclic bending and folding, sand-grit erosion, knife-scratching, and even heavy loading with simulated acid rain. It also retains its adhesion to glass (17 MPa), ceramic (12 MPa), and metal (34 MPa) substrates.

This content is only available as a PDF.
You do not currently have access to this content.