Additive manufacturing (AM) has already been evolved into a promising manufacturing technique. In order to achieve the performance of conventionally manufactured components, additively manufactured components must meet at least the same mechanical and physical requirements. Due to the layer-wise building process, the properties of additively manufactured components differ from that of bulk materials. Within the scope of this study, selective laser melting (SLM) was employed to manufacture specimens which serve as substrates for a subsequent coating process. An Inconel 718 (IN718) alloy served as AM feedstock. Mechanical posttreatments were applied to the AM samples and rated with respect to the successive thermal spraying process. The produced AM samples were examined in their initial state as well as under post-treated conditions. In this report, the resulting surface roughness was analyzed. Different AM samples were coated by means of high velocity oxy-fuel (HVOF) spraying and atmospheric plasma spraying (APS). The interface between the thermally sprayed coating and the AM substrate was metallographically investigated. Adhesion tests were conducted to scrutinize the bond strength of the coating to the AM substrate.

This content is only available as a PDF.
You do not currently have access to this content.