Abstract
Abradable coatings are typically applied on the compressor section of gas turbines to reduce air leakage and increase compressor performance. In pursuit of engine efficiency, the service temperatures of the components are higher than before. The use of nickel-graphite coating in compressor applications in higher temperature environments diminishes the abradable property of the coating. In the current study, a series of abradable coatings were prepared with combustion and plasma spray methods and tested at gas turbine conditions. Coating microstructure, hardness, abradability, and erosion resistance was investigated and compared against conventional nickel-graphite coating. In addition, coatings were aged to mimic the aging cycle in industrial gas turbines and compared to as-sprayed coating properties.