Abstract
In this study, pure Al coating was deposited via in-situ shot-peening-assisted cold spray method in order to study the effect of the in-situ tamping effect which was caused by the impact of large sized shot-peening particles on grains size evolution of coatings. The microstructures of the as-sprayed Al coating were observed by using Scanning Electron Microscope and Electron Backscatter Diffraction. A commercial gas atomized Al powder with a grain size range of 10-20 μm was used as the spraying powder. The cross section of the as-sprayed Al particles presented elongated rectangular morphologies, which indicated that the nearly spherical particles experienced severe plastic deformation by the impact of large sized shot-peening particles. It was found that dynamic recrystallization of dislocations-ridden regions was responsible for the grain refinement of cold sprayed coating. Aluminum grains with size of several tens to several hundred of nanometers can be apparently recognized at the whole cross section of the particle. Therefore, in-situ shot-peening-assisted cold spray method can deposit completely nanocrystalline coating using micrometer-grain powder, and thus can be employed to develop high quality coatings of commercial importance.