In this study, the mechanisms responsible for enhancing the adhesion strength of thermally sprayed metallic coatings subjected to vacuum heat treatment were investigated using atmospheric plasma sprayed (APS) CoNiCrAlY coatings as an example. The formation of metallurgical bonding between the coating and the substrate, which determined the increase in the adhesion strength of the coatings, was studied by analyzing the effect of morphological changes of the oxide film in the coating. The results showed that during the vacuum heat treatment process, the oxide film formed during the coating deposition gradually broke down and subsequently shrank into round oxides. After vacuum heat treatment, the adhesion strength of the coating improved significantly, and there was a positive nonlinear relationship between the treatment time and the adhesion strength. The increase in the adhesion strength was caused by the formation of metallurgical bonding between the coating and the substrate. However, the prerequisite for the formation of metallurgical bonding was that the oxide film had to break during the vacuum heat treatment process. A thermodynamic 2D model based on the thermal grooving theory was proposed to explore the essential conditions for the breaking and shrinking of the oxide film.

This content is only available as a PDF.
You do not currently have access to this content.